首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1896篇
  免费   169篇
  国内免费   280篇
化学   2023篇
晶体学   23篇
力学   9篇
综合类   16篇
数学   5篇
物理学   269篇
  2024年   2篇
  2023年   30篇
  2022年   38篇
  2021年   91篇
  2020年   79篇
  2019年   76篇
  2018年   67篇
  2017年   81篇
  2016年   102篇
  2015年   93篇
  2014年   105篇
  2013年   178篇
  2012年   100篇
  2011年   124篇
  2010年   91篇
  2009年   139篇
  2008年   115篇
  2007年   106篇
  2006年   106篇
  2005年   99篇
  2004年   89篇
  2003年   64篇
  2002年   62篇
  2001年   30篇
  2000年   30篇
  1999年   30篇
  1998年   24篇
  1997年   29篇
  1996年   19篇
  1995年   26篇
  1994年   15篇
  1993年   23篇
  1992年   19篇
  1991年   13篇
  1990年   13篇
  1989年   10篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有2345条查询结果,搜索用时 31 毫秒
151.
The reactions of dihydroxyfumarate with glyoxylate and formaldehyde exhibit a unique pH‐controlled mechanistic divergence leading to different product suites by two distinct pathways. The divergent reactions proceed via a central intermediate (2,3‐dihydroxy‐oxalosuccinate, 3 , in the reaction with glyoxylate and 2‐hydroxy‐2‐hydroxymethyl‐3‐oxosuccinate, 14 , in the reaction with formaldehyde). At pH 7–8, products ( 7 , 8 , and 15 ) exclusively from a decarboxylation of the intermediate are observed, while at pH 13–14, products ( 9 , 10 , and 16 ) solely derived from a hydroxide‐promoted fragmentation of the intermediate are formed. The decarboxylative and fragmentation pathways are mutually exclusive and do not appear to coexist under the range of pH (7–14) conditions investigated. Herein, we employ a combination of quantitative 13C NMR measurements and density functional theory calculations to provide a rationale for this pH‐driven reaction divergence. These rationalizations also hold true for the reactions of dihydroxyfumarate produced in situ by the catalytic cyanide‐mediated dimerization of glyoxylate. In addition, the non‐enzymatic decarboxylation and fragmentation transformations of these central intermediates ( 3 and 14 ) appear to have intriguing parallels to the enzymatic reactions of oxalosuccinate and formation of glyceric acid derivatives in extant metabolism – the high and low pH mimicking the precise control exerted by the enzymes over reaction pathways. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
152.
"研究了CdTe/CdO?nH2O核壳纳米复合物的水相合成及其光学特性. 以巯基乙酸为稳定剂通过氯化镉和碲氢化钠反应制备了碲化镉纳米晶. 在反应过程中, 反应前驱溶液中镉离子与碲离子的摩尔浓度比对最终制备的碲化镉纳米晶的荧光强度起到了极其重要的作用. 在pH值为8.2, 镉离子与碲离子摩尔浓度比为4.0的情况下,制备出了具有最强荧光强度的碲化镉量子点.之后,CdTe/CdO?nH2O核壳纳米复合物在水相中制备出来.在适当的氢氧化镉沉积在碲化镉纳米粒子表面后,碲化镉量子点的荧光大大增强.所制备的CdTe/C  相似文献   
153.
Proteoliposomes carrying reconstituted yeast plasma membrane H+-ATPase in their lipid membrane or plasma membrane vesicles are model systems convenient for studying basic electrochemical processes involved in formation of the proton electrochemical gradient (ΔμH +) across the microbial or plant cell membrane. Δψ- and pH-sensitive fluorescent probes were used to monitor the gradients formed between inner and outer volume of the reconstituted vesicles. The Δψ-sensitive fluorescent ratiometric probe oxonol VI is suitable for quantitative measurements of inside-positive Δψ generated by the reconstituted H+-ATPase. Its Δψ response can be calibrated by the K+/valinomycin method and ratiometric mode of fluorescence measurements reduces undesirable artefacts. In situ pH-sensitive fluorescent probe pyranine was used for quantitative measurements of pH inside the proteoliposomes. Calibration of pH-sensitive fluorescence response of pyranine entrapped inside proteoliposomes was performed with several ionophores combined in order to deplete the gradients passively formed across the membrane. Presented model system offers a suitable tool for simultaneous monitoring of both components of the proton electrochemical gradient, Δψ and ΔpH. This approach should help in further understanding how their formation is interconnected on biomembranes and even how transport of other ions is combined to it.  相似文献   
154.
A quantitative method was developed for the direct identity confirmation and quantification of alendronate using CE-MS combined with a pH-assisted focusing technique, dynamic pH barrage junction focusing. A pH-induced variation in electrophoretic mobility led to online focusing of alendronate at the sample/pH barrage boundary, significantly improving the detection sensitivity. In addition, the use of a flow-through microvial CE electrospray interface and the multiple reaction monitoring mode of MS further improved the specificity and quantification capability of this technology. This quantitative method presented a wide linear dynamic range over 8–2000 ng/mL and an LOD of 2 ng/mL. A 460-fold improvement in sensitivity was obtained when pH barrage junction focusing was applied during the CE process, in comparison to when normal CE was conducted without online sample stacking. The superior detection sensitivity over previously reported methods enables direct analysis of bisphosphonate compounds, eliminating tedious pre-column sample enrichment and derivatization. Validation of alendronate content in a commercial drug tablet further proved the reliability and power of this method. This simple method with no sample derivatization, superior sensitivity, and short run time (<8 min) is a promising alternative for accurate quantification of alendronate and other types of bisphosphonate compounds in both drug formulations and plasma samples.  相似文献   
155.
Discerning the influence of electrochemical reactions on the electrode microenvironment is an unavoidable topic for electrochemical reactions that involve the production of OH and the consumption of water. That is particularly true for the carbon dioxide reduction reaction (CO2RR), which together with the competing hydrogen evolution reaction (HER) exert changes in the local OH and H2O activity that in turn can possibly affect activity, stability, and selectivity of the CO2RR. We determine the local OH and H2O activity in close proximity to a CO2-converting Ag-based gas diffusion electrode (GDE) with product analysis using gas chromatography. A Pt nanosensor is positioned in the vicinity of the working GDE using shear-force-based scanning electrochemical microscopy (SECM) approach curves, which allows monitoring changes invoked by reactions proceeding within an otherwise inaccessible porous GDE by potentiodynamic measurements at the Pt-tip nanosensor. We show that high turnover HER/CO2RR at a GDE lead to modulations of the alkalinity of the local electrolyte, that resemble a 16 m KOH solution, variations that are in turn linked to the reaction selectivity.  相似文献   
156.
Response theory is used to investigate one- and two-photon absorption(TPA) as well as the emission properties of a series of potential zinc ion and pH sensitive materials containing 2-(2’-hydroxyphenyl)benzoxazole(HPBO) end groups.Special emphasis is placed on the evolution of their optical properties upon combining with zinc ions or deprotonation.Our calculated results indicate that upon combining with zinc ions or deprotonation,these HPBO derivatives show drastic changes in their one-photon absorption(OPA),emission,and TPA properties.Moreover,the mechanisms of the probes are analyzed and found to be an intramolecular charge transfer.These compounds are thus proved to be excellent candidates for two-photon fluorescent zinc and pH probes.  相似文献   
157.
In this study, a sol–gel TiO2 thin film has been spin-coated on a commercial ITO glass substrate as the extended-gate field effect transistor (EGFET) for hydrogen ion sensing. The as-deposited films are further annealed at various temperatures (Ta) under ambient atmosphere. It is found that the bi-layer structure of TiO2/ITO EGFET exhibits good linear sensitivity from pH 1 to 11. Anatase TiO2 appeared as early as Ta = 200 °C and a brookite (121) diffraction evolved at Ta = 500 °C. No prominent influence on the surface fine structures could be found at higher Ta. Due to the reduction or disappearance of the surface hydroxyl groups on TiO2, the sensitivities of the TiO2/ITO pH-EGFET device are rapidly reduced. However, the influence of the conductivity decay for ITO substrates annealed at high Ta could not be excluded. A maximum sensitivity 61.44 mV/pH is achieved as Ta = 300 °C.The bi-layer structure of TiO2/ITO exhibits better long-term stability than the traditional ITO sensing membranes. In addition, the asymmetric hysteresis is more significant in alkaline buffer solutions, which could be explained by a site-binding model because the diffusion of H+ ions into the buried sites of the sensing film is more rapid than that of OH ions.  相似文献   
158.
KH2PO4 single crystals were grown in aqueous solution at different pH values by using “point seeds” with a defined crystallographic direction at 59 degree to the Z axis. Atomic Force Microscope (AFM) was applied to observe the surface morphology of (100) face. It was found that at the same supersaturation, the larger steps appeared at the lower pH value before appearance of 2D nucleus. We found that 2D nucleus was occurred at σ ≤ 0.04 when pH value is <2.8. The occurrence of 2D nucleus was caused by the decreasing step‐edge free energy with the decreasing of pH value in the growth solution. In this paper, we observed the morphologies of (100) faces of KDP crystals which grew in solutions with different pH values. 2D nucleuses appeared on the terrace of growth steps when pH value down to 2.8 and 3.2 at supersaturation of 0.04, while pH value down to 2.4, only 2D nucleation control the growth. Therefore, the pH value can change the growth mechanism of KDP crystals.  相似文献   
159.
Sensors play a significant role in the detection of toxic species and explosives, and in the remote control of chemical processes. In this work, we report a single‐molecule‐based pH switch/sensor that exploits the sensitivity of dye molecules to environmental pH to build metal–molecule–metal (m‐M‐m) devices using the scanning tunneling microscopy (STM) break junction technique. Dyes undergo pH‐induced electronic modulation due to reversible structural transformation between a conjugated and a nonconjugated form, resulting in a change in the HOMO–LUMO gap. The dye‐mediated m‐M‐m devices react to environmental pH with a high on/off ratio (≈100:1) of device conductivity. Density functional theory (DFT) calculations, carried out under the non‐equilibrium Green’s function (NEGF) framework, model charge transport through these molecules in the two possible forms and confirm that the HOMO–LUMO gap of dyes is nearly twice as large in the nonconjugated form as in the conjugated form.  相似文献   
160.
We present herein a short tripeptide sequence (Lys–Phe–Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self‐assembles in water and shows a reversible and concentration‐dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH 7.4 but rupture rapidly at pH≈6. The pH‐sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug‐sensitive and drug‐resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence‐activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号